3(5). Обозначим половины высоты АА1 за х, высоту из вершины С - С1, точку пересечения высот - О.
Угол между высотами равен углу В как взаимно перпендикулярные.
Имеем 3 прямоугольных подобных треугольника: АОС1, СОА1 и АА1В.
Тогда
x² = 36.
x = √36 = 6.
АА1 = 2*6 = 12.
Пусть сторона основания равна а, то из треугольника MCD( угол с=90 гр) по т. Пифагора: DM^2=MC^2+CD^2
180=a^2+(a/2)^2
5a^2=720
a=12
сторона основания равна 12, то ВМ=СМ=МО=6. Из треугольника SMO по т. Пифагора SO^2=SM^2-OM^2=292-36=256, SO=16
Пусть высота пьедестала х м,то высота елки с птедесталом 9,5+х
по т. Пифагора (9,5+х)^2+44=144
90,25+19x+x^2-100=0
x^2+19x-9,75=0
D=361+39=400
x1=1/2 x2=-19,5 - не удовлетворяет условию
Значит высота пьедестала 1/2 м
Решение во вложении.......
Ну, я надеюсь, дано ты запишешь сам. Вот решение, как сделаешь рисунок, все будет понятно: т.к. угол DAC=30 градусам, значит катет лежащий на против него равен половине гипотенузы (а она АС равна 12), а значит DC равен 6. Т. к. ABCD прямоугольник, значит и противоположная сторона АВ равна тоже 6. АС диагональ и она делится в точке пересечения по палам и следовательно АО = 6. В треугольнике АОВ все углы 60, т.к. угол DAO = 30 и следовательно угол ОАВ равен 90-30=60, и значит все углы тоже равны 60. И значит периметр треугольника равен 6+6=6= 18. Вот и все.