Примем, что диагонали ромба равны: ВD=12 и АС=16.
Сторона основания (ромба) находится по Пифагору:
АВ=√(АО²+ВО²)=√(6²+8²)=10.
Площадь ромба равна: S=(1/2)*D*d=S=(1/2)*16*12=96.
В треугольнике АВС АМ и ВО - медианы и по свойству медиан точкой пересечения делятся в отношении 2:1, считая от вершины.
Значит ОР=ВО:3=6:3=2. Тогда РD=PO+OD=2+6=8.
Площадь ромба равна и произведению высоты ромба на его сторону, то есть S=a*h, отсюда h=ВН=S/a=96/10=9,6.
Прямоугольные треугольники НВD и KPD подобны и КР/ВН=PD/BD или КР/9,6=8/12, отсюда КР=8*9,6/12=6,4.
В прямоугольном треугольнике SKP угол SKP=60°, значит <KSP=30° и КР=0,5КS.
Тогда по Пифагору SP=√[(12,8)²-(6,4)²]=6,4√3.
Объем пирамиды равен (1/3)So*h, где Sо - площадь основания, а h - высота пирамиды. Тогда V=(1/3)*96*6,4√3=204,8√3.
Ответ: V=204,8.
Если плоскости α и β пересекаются, то их пересечение является прямой линией.
На прямой могут находиться эти три точки. (и не только три) :-)
Совпадения плоскостей не требуется, если точки лежат на прямой.
Прикрепляю решение двух номеров на фото. Номер про треугольник без решения про биссектрису.
Если разобраться, кажущаяся на первый взгляд сложной задача не так уж сложна.
По теореме Пифагора нужно найти стороны АВ и ВС, затем применить теорему косинусов.
<em><u> Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними. </u></em>
Решение в рисунке.