Эт неполное квадратне уравнение.Чтобы его решить, выносят общий множитель за скобки.
х²-3х=0
х(х-3)=0
х=0 , х-3=0
х=3
2-2cos²x+3cosx=0
cosx=a
2a²-3a-2=0
D=9+16=25
a1=(3-5)/4=-1/2⇒cosx=-1/2⇒x=+-2π/3+2πn x=2π/3∈[0;π]
a2=(3+5)/4=2⇒cosx=2∉[-1;1]
Объяснение: 2x²-8x+c<em> = </em>0.
<em>Имеем квадратное уравнение, где с - некоторое произвольное число (параметр), поэтому при разных значениях с уравнение может как иметь корни, так и не иметь</em>. Поэтому нужно решить уравнения для всех возможных значений с.
Найдем дискриминант:
Рассмотрим 3 различных случая:
1) D < 0. Если D < 0, то уравнение не имеет решений. Найдем значения с, при которых дискриминант отрицателен: 64 - 8c < 0; 8c > 64 ⇔ c > 8. При таких значениях с корней у нас не будет вообще.
2) D = 0. Если D = 0, то уравнение имеет единственное решение: Найдем значение с, при котором дискриминант равен 0: 64 - 8c = 8 ⇔ c = 8. При таком значении параметра имеем один корень - х = 2.
3) D > 0. Если D > 0, то уравнение имеет два различных корня, которые находятся по общей формуле: . Выразим каждый из корней:
Аналогично
Найдем значения с, при которых дискриминант положителен: 64 - 8с > 0; 8с < 64 ⇔ c < 8. При таких значениях параметра у нас будут два корня:
ОТВЕТ: если с < 8, то если с = 8, то х = 2; если с > 8, то корней нет.