1) Площадь проекции треугольника со сторонами 39, 17, 28 см определим по формуле Герона.
р = (39+17+28)/2 = 42 см.
Sп = √(42(42-39)(42-17)(42-28)) = 210 см².
Площадь проекции равна: Sп = S*cos α.
Отсюда находим угол α наклона плоскостей.
α = arc cos(Sп/S) = arc cos(420/210) = arc cos0,5 = 60°.
2) Для решения дополнительного задания надо было указать фигуру в основании пирамиды.
помоему 1если я не ошибаюсь
Касательные и два радиуса, проведенные к точкам касания, образуют четырехугольник. Сумма углов любого выпуклого четырехугольника равна 360°
Радиус, проведенный к касательной в точке касания, образует с ней угол 90°
Так как два угла, образованные радиусами и касательными. прямые, то их сумма равна 180°
Сумма углов FEG+FOG будет 360°-180°= 180°
Поэтому угол <span>FEG равен 180</span>°-<span>∠ FOG
</span>180°-140 °=40
∠ FЕG=40°
Решение написано во вложении