Это задание легче сделать,если найти наименьшее общее кратное
Х руб - стоимость одной тетради;
х/3 руб - стоимость одного карандаша;
15 * (х/3) руб - отдал за 15 карандашей;
4х руб - отдал за тетради;
4х+15*(х/3) руб - отдал за покупки;
500-(4х+15*(х/3)) руб - осталось
500-(4х+15*(х/3)) = 500 - (4х+5х) = 500-9х
ответ: 500-9х
Tx^2=y^2+6y+21,
x^2=y^2+6y+9+12,
x^2=(y+3)^2+12,
x^2-(y+3)^2=12, пусть t=y+3
(x+t)(x-t)=12.
Если x и t целые, то x+t, x-t целые числа, пусть x+t=k,x-t=m, тогда
x=(k+m)/2
t=(k-m)/2, причем k*m=12
Так как числа x и t целые, то k и m одновременно могут быть либо четными, либо нечетными. Учитывая, что 1*12=12, 2*6=12,3*4=12, то последнему условия удовлетворяют толки следующие целые числа (k,m): (2,6);(6,2);(-2;-6);(-6,-2). Откуда
x=4, y=t-3=-2-3=-5
x=4, y=t-3=2-3=-1
x=-4, y=t-3=2-3=1
x=-4, y=t-3= -2-3=-5