a)cos(6t+π/2)=-√3/2
-sin6t=-√3/2
sin6t=√3/2
[6t=π/3+2πk⇒t=π/18+πk/3
[6t=2π/3+2πk⇒t=π/9+πk/3
б)-2sinxcos2x/(1+cosx)=0
1+cosx≠0⇒cosx≠-1⇒x≠π+2πk-ОДЗ
sinx=0⇒x=πk+ОДЗ⇒x=2πk
cos2x=0⇒2x=π/2+πk⇒x=π/4+πk/2
в)
4sin²3x+4cos²3x-cos²3x-3sin²3x-4sin3xcos3x=0
sin²3x-4sin3xcos3x+3cos²3x=0/cos²3x
tg²3x-4tg3x+3=0
tg3x=a
a²-4a+3=0
{a1+a2=4
{a1*a2=3
a1=1⇒tg3x=1⇒3x=π/4+πk⇒x=π/12+πk/3
a2=3⇒tg3x=3⇒3x=arctg3+πk⇒x=1/3*arctg3+πk/3
((2х-2)(3-х)-(х+3)²) / 9-х² = 5
6х-2х²-6+2х-х²-6х-9=5*(9-х²)
-3х²+2х-15=45-5х²
2х²+2х-60=0
х²+х-30=0; Д=11
х1=(-1+11)/2=5
х2=(-1-11)/2=-6
А1=16,9 а2=15,6
d=?
d=15,6-16,9=-1,3
An=a1+(n-1)*d
0=16,9+(n-1)*(-1,3)
-16,9=(n-1)*(-1,3)
-16,9/-1,3=n-1
13=n-1
13+1=n
14=n
проверяем :
A14=16,9+(14-1)*(-1,3)
A14=0