Т.к. углы BCD и BAC равны по свойству касательной и хорды в точку касания, то треугольники BCD и BAC подобны по двум углам. Значит
BC/BD=AC/CD=AB/CB.
Из 1-го равенства получаем BC/4=12/6, т.е. CB=8.
Из 2-го равенства 12/6=(AD+4)/8, т.е. AD=16-4=12.
R вписаного шара = (3V)/S полной поверхности
2=(3*10)\S полной поверхности
S полной поверхности=30\2=15 см^2
Основанием четырёхугольной пирамиды SABCD является прямоугольник ABCD, где AB = 2√3, BC = 2√6. Основание высоты пирамиды - это центр прямоугольника. Из вершин А и С опущены перпендикуляры АР и CQ к ребру SB.
1. Докажите, что P - середина отрезка BQ
2. Найдите угол между гранями SBA и SBC, если SD = 6
Боковые ребра пирамиды равны (так как вершина проецируется в центр основания).
Значит АS=BS=CS=DS=6.
Грани - равнобедренные треугольники.
а) Рассмотрим равнобедренный треугольник АSВ. В нем высота SH1, опущенная на основание AB по Пифагору равна SH1=√(SA²-AH1²)= √33.
Соответственно, площадь грани АSB равна Sasb=(1/2)*AB*SH1=√99.
Тогда АМ (высота к боковой стороне BS) равна АP=2Sasb/SB или
АP=2√99/6=√99/3. МВ по Пифагору равно PВ=√(АВ²-АP²) или
PВ=√(12-99/9)=√(9/9)=1.
Точно также в треугольнике ВSC имеем:
SH2=√(36-6)=√30.
Sbsc=(1/2)*BC*SH2=√6*√30=6√5.
CQ=2Sbsc/SC или CQ=2√5. Тогда
BQ=√(BC²-CQ²) или BQ=√(24-20)=√4=2.
Итак, доказано, что BQ=2*BP, то есть точка P - середина BQ.
б) Двугранные углы измеряются линейным углом, то есть углом, образованным пересечением двугранного угла с плоскостью, перпендикулярной к его ребру. Таким образом, чтобы измерить двугранный угол, можно взять любую точку на его ребре и
перпендикулярно ребру провести из неё лучи в каждую из граней.
Возьмем на ребре BS точку Р и проведем из нее в гранях ASB и CSB
перпендикуляры. Один из них нам уже знаком - это отрезок АP. Второй - отрезок РK, который будет параллелен отрезку СQ и равен его половине (так как PK - средняя линия треугольника BQC, поскольку точка P - середина отрезка BQ - доказано выше). По Пифагору АK=√(АВ²+ВK²) или АK=√(12+6)=3√2.
Тогда по теореме косинусов искомый угол АPK равен:
Cosα = (b²+c²-a²)/2bc. Или
Cosα = (АP²+PK²-AK²)/2*АP*PK.
Cosα = (99/9+5-18)/(2*(√99/3)*(√5))=-2/81,97=-0,135.
Мскомый угол равен arccos(-0,135) или α≈97,76°.
Параллелограмм АВСД АС=12 ВС=8 <ВСА=30° Проведём перпендикуляр ВН к диагонали АС ВН=ВС/2=4 (как катет от гипотенузы напротив <30°)
S(АВС)=АС*ВН/2=12*4/2=24
S(АВСД)=2*S(АВС)=2*24=48 думаю правильно
Угол А берем за х
угол В в 2 раза больше,значит 2х
сумма острых углов прямоугольного тр-ка=90 гр
х+2х=90
3х=90
х=90\3
х=30
угол А=30 гр
угол В = 30*2=60 гр