формула синусов AB/sin C = 2 R
3√2 / sin 45 = 2 R
sin 45 = √2 / 2
3√2 / √2 / 2 = 2 R
2 R = 6 /: 2
R = 3 см
3 градуса мне кажеться вродебы
<em>Расстояние между параллельными плоскостями в любом месте одинаково и измеряется перпендикулярным к ним отрезком. </em>
Пусть для удобства отрезок - расстояние между плоскостями - для обеих наклонных будет одним и тем же.
Тогда наклонные, их проекции и расстояние между плоскостями составят два прямоугольных треугольника, в которых наклонные - гипотенузы, проекции и расстояние между плоскостями - катеты.
<span>Одна наклонная по условию равна проекции второй, поэтому равна 5, ее проекция - 3.
Со вторым катетом (расстоянием между плоскостями) составится египетский треугольник, поэтому <em>расстояние между плоскостями равно 4</em>. ( Можно проверить по т. Пифагора - результат будет тот же)</span>
Этот угол равен 110Проведи в треугольнике среднюю линию MN параллельную AB. Угол BMN равен углу АBM, как внутренние накрест лежащие при параллельных прямых (средняя линия MN параллельна AB) и, следователен, равен 40 градусам, поскольку угол АBM равен 40 градусам по условию. А теперь рассмотрим треугольник BMN. Средняя линия MN равна половине АB, но BM тоже равна половине АВ по условию. Значит, треугольник ВМN равнобедренный с углом 40 градусов при его вершине М. Тогда два других угла равны (180-40)/2=70 градусов, потому что сумма углов треугольника равна 180 градусов, а углы при основании равнобедренного треугольника равны между собой. Но угол АВС=угол АВМ + угол МВN, а угол МВN равен 70 градусам. Значит угол АВС=40+70=110 градусов.