Это формула. Если свернуть, то получится: cos(2a+3a)=cos 5a
1) Пусть Е - сколь угодно большое положительное число. Нужно доказать, что найдётся такое n=N, что при n>N будет n/3+1>E. Решая неравенство n/3+1>E, находим n/3>E-1, откуда n>3*(E+1). Но так как n⇒∞, то такое значение n=N всегда (то есть при любом Е) найдётся. Тем более это неравенство будет справедливо для всех ещё больших значений n>N. А это и значит, что lim(n/3+1)=∞.
2) Пусть Е - сколь угодно большое по модулю отрицательное число. Нужно доказать, что найдётся такое n=N, что при n>N будет 1-n²<E. Это неравенство равносильно неравенству n²>1-E, или n>√(1-E). Так как 1-E>0 и n⇒∞, то такое значение n=N всегда найдётся. Тем более это неравенство справедливо для всех ещё больших значений n>N. А это и значит, что lim(1-n²)=-∞.
переведем дроби в десятичную дробь получаем 3/6=0.5 и 2/4=0.5 получаем уравнение 4у-0.5у+у+0.5у=5у
1,3*(5-6)-1.7*(4-5)=1,3*(-1)-1,7*(4-5)=-1,3-1,7=-3
Дальше у меня нету время сори