1.4х-1 бак
х-2 бак
1.4х-25=х+25
1.4х-х=25+25
0.4х=50
х=50:0.4=125л
175-25=125+25
150=150
29+59-y+15=72
103-у=72
-у=72-103
-у=-31
у=31
1)0;-3
2)8;-3
3)299
4)-8;-9
5)0
Переводим в СИ
37км/ч=37×1000:3600=10.27м/сек
148км=148×1000=148000
t=s:v
t=148000:10.27=грубо говоря будет 14 если округлить до десятых.
Из цифр 1, 2, 3, 4, 5 наугад составляется трёхзначное число (без повторяющихся цифр). Какова вероятность того, что составленное число будет чётным?
Решение. Прежде всего укажем общее число трёхзначных чисел, которые можно записать с помощью цифр 1, 2, 3, 4, 5 (без повторения):
N = A53 = 5*4*3.
Сколько же среди них таких, которые оканчиваются чётной цифрой? Попытаемся составить такое число. На третьем месте нужно поставить одну из цифр 2, 4; следовательно, последнюю цифру искомого трёхзначного числа можно выбрать двумя способами. После того как эта цифра будет выбрана, оставшиеся две цифры мы сможем выбрать в любом порядке из числа не использованных четырёх цифр. Это можно осуществить таким числом способов: A42 = 4*3. В соответствии с теоремой умножения для чисел случаев общее число способов составления четного трёхзначного числа
M = 2*4*3.
Таким образом, по классической формуле вероятность интересующего нас события A будет
P(A) =
M
N
=
2*4*3
5*4*3
=
2
5
.
Полученная вероятность совпадает с вероятностью того, что при произвольной перестановке цифр 1, 2, 3, 4, 5 на третьем месте окажется чётная цифра