Т.к. АВ 17 см,то АК=17:2=8,5 см и КВ =17:2=8,5 см
т.к. а -середина, то МК=8,5*2=17 см и КР=17 см
МР=17+17=34 см
ну как то так...
желаю удачи
№2:
Так как a||b, то углы ABC и CDE равны (свойство секущей и двух параллельных прямых), ⇒, угол CDE=70.
Так как угол ACD=115, а угол АСЕ=180(прямой), то угол DCE=ACE-ACD=180-115=65.
Так как в треугольнике 180 градусов, то угол CED=180-65-70=45.
Треугольники АВС и СDE равны, ⇒, угол ВАС=45, угол АСВ=65
№4:
В треугольнике АВС: угол АВС=40, а АСВ=90,⇒, ВАС=180-90-40=50.
В треугольнике ВCD: DBC=40, BDC=90,⇒, DCB=180-90-40=50
В треугольнике ADC: ADC=90, DAC=50,⇒,ACD=180-90-50=40
№3:
В треугольнике КМР прямая МН делит угол М пополам,⇒, углы КМН и РМН равны = 75.
Так как угол МНР=15, а угол КНР=180(прямой), то КНМ=180-15=165.
Значит, в треугольнике КМН: угол К=180-75-165=-60,⇒, угол МКН - тупой.
В треугольнике МНР: МНР=15, НМР=75,⇒, угол Р=180-75-15=90,⇒, угол МРН-прямой.
Опустим из точки O на диагональ AC перпендикуляр OO'. При этом из теоремы о трех перпендикулярах (перпендикуляр SA к плоскости (ABC), наклонная SO', прямая OO' перпендикулярная AO') следует, что отрезок OO' перпендикулярен наклонной SO'. Тогда искомым углом будет угол , обозначим его меру буквой .
Из прямоугольного треугольника (угол равен 90 градусов по-доказанному) найдем :
-----(1)
В свою очередь найдем из прямоугольного треугольника ( угол градусов, что следует из определения прямой перпендикулярной плоскости) по теореме Пифагора:
------(2)
где по условию
Из прямоугольного треугольника найдем
длину перпендикуляра :
--------(3)
И, наконец, подставим в (1) вместо и выражения (2) и (3), получим:
Расчет:
А значит угол градусов
Биссектриса АМ делит угол А на два <BAM=<CAM=х
Биссектриса СK делит угол С на два <АСК=<ВСК
<С=180-<В-<A=180-110-2х=70-2х.
<АСК=(70-2х)/2=35-х
Из ΔАОС найдем угол АОС:
<span><АОС=180-<САО-<АСО=180-х-(35-х)=145°</span>