1 сутки = 24 часа
1) 24:2=12 часов - половина суток
2) 12:3=4 часа можно провести в гостях в субботу
3) 24:3=8 часов - третья часть суток
4) 8:4*3=6 часов можно провести в гостях в воскресенье
5) 6+8=14 часов можно провести в гостях в субботу и воскресенье вместе
в 1 часе = 60 минут
14 часов = 14*60= 840 минут
840:5=168 конфет можно съесть за 14 часов
Бедные хозяева..... гости за 2 дня съели 168 конфет, еще и гостили 14 часов за 2 дня..... я бы выгнала уже таких гостей))))))))))))))))))))) ШУТКА!!!!
У=-6х+14, если у=2, тогда
-6х+14=2
-6х=2-14
-6х=-12
х=(-12) : (-6) = 2
х=2
1) 11+12+13=36 (ор.) - удвоенное количество у всех троих
2) 36:2=18 (ор.)
Ответ: у Андрея, Бори и Вовы вместе 18 орехов.
В Древнем Китае уже пользовались десятичной системой мер, обозначали
дробь словами, используя меры длины чи: цуни, доли, порядковые, шерстинки,
тончайшие, паутинки. Дробь вида 2,135436 выглядела так: 2 чи, 1 цунь, 3
доли, 5 порядковых, 4 шерстинки, 3 тончайших, 6 паутинок. Так записывались
дроби на протяжении двух веков, а в V веке китайский ученый Цзю-Чун-Чжи
принял за единицу не чи, а чжан = 10 чи, тогда эта дробь выглядела так: 2
чжана, 1 чи, 3 цуня, 5 долей, 4 порядковых, 3 шерстинки, 6 тончайших, 0
паутинок.
Предшественниками десятичных дробей являлись шестидесятеричные дроби
древних вавилонян. Некоторые элементы десятичной дроби встречаются в трудах
многих ученых Европы в 12, 13, 14 веках.
Десятичную дробь с помощью цифр и определенных знаков попытался
записать арабский математик ал-Уклисиди в X веке. Свои мысли по этому
поводу он выразил в "Книге разделов об индийской арифметике".
В XV веке, в Узбекистане, вблизи города Самарканда жил математик и
астроном Джемшид Гиясэддин ал-Каши (дата рождения неизвестна). Он наблюдал
за движением звезд, планет и Солнца, в этой работе ему необходимы были
десятичные дроби. Ал-Каши написал книгу "Ключ к арифметике" (была издана в
1424 году), в которой он показал запись дроби в одну строку числами в
десятичной системе и дал правила действия с ними. Ученый пользовался
несколькими способами написания дроби: то он применял вертикальную черту,
то чернила черного и красного цветов. Но этот труд до европейских ученых
своевременно не дошел.
Примерно в это же время математики Европы также пытались найти удобную
запись десятичной дроби. В книге "Математический канон" французского
математика Ф. Виета (1540-1603) десятичная дробь записана так 2 135436 -
дробная часть и подчеркивалась и записывалась выше строки целой части
числа.
В 1585 г., независимо от ал-Каши, фламандский ученый Симон Стевин
(1548-1620) сделал важное открытие, о чем написал в своей книге "Десятая"
(на французском языке "De Thiende, La Disme"). Эта маленькая работа (всего
7 страниц) содержала объяснение записи и правил действий с десятичными
дробями. Он писал цифры дробного числа в одну строку с цифрами целого
числа, при этом нумеруя их. Например, число 12,761 записывалось так: