Решение: Введем события
А1А1 = (газеты доставлены своевременно в первое отделение),
А2А2 = (газеты доставлены своевременно во второе отделение),
А3А3 = (газеты доставлены своевременно в третье отделение),
по условию P(A1)=0,95;P(A2)=0,9;P(A3)=0,8P(A1)=0,95;P(A2)=0,9;P(A3)=0,8.
Найдем вероятность события ХХ = (только одно отделение получит газеты вовремя). Событие Х произойдет, еслиТаким образом,
X=A1⋅A2¯¯¯¯¯¯⋅A3¯¯¯¯¯¯+A1¯¯¯¯¯¯⋅A2⋅A3¯¯¯¯¯¯+A1¯¯¯¯¯¯⋅A2¯¯¯¯¯¯⋅A3.X=A1⋅A2¯⋅A3¯+A1¯⋅A2⋅A3¯+A1¯⋅A2¯⋅A3.
P(X)=P(A1)⋅P(A2¯¯¯¯¯¯)⋅P(A3¯¯¯¯¯¯)+P(A1¯¯¯¯¯¯)⋅P(A2)⋅P(A3¯¯¯¯¯¯)+P(A1¯¯¯¯¯¯)⋅P(A2¯¯¯¯¯¯)⋅P(A3)=P(X)=P(A1)⋅P(A2¯)⋅P(A3¯)+P(A1¯)⋅P(A2)⋅P(A3¯)+P(A1¯)⋅P(A2¯)⋅P(A3)=
=0,95⋅0,1⋅0,2+0,05⋅0,9⋅0,2+0,05⋅0,1⋅0,8=0,032.=0,95⋅0,1⋅0,2+0,05⋅0,9⋅0,2+0,05⋅0,1⋅0,8=0,032.
Найдем вероятность события YY=(хотя бы одно отделение получит газеты с опозданием). Введем противоположное событие Y¯¯¯¯Y¯=(все отделения получат газеты вовремя). Вероятность этого события
P(Y¯¯¯¯)=P(A1⋅A2⋅A3)=P(A1)⋅P(A2)⋅P(A3)=0,95⋅0,9⋅0,8=0,684.P(Y¯)=P(A1⋅A2⋅A3)=P(A1)⋅P(A2)⋅P(A3)=0,95⋅0,9⋅0,8=0,684.
Тогда вероятность события YY:
P(Y)=1−P(Y¯¯¯¯)=1−0,684=0,316.P(Y)=1−P(Y¯)=1−0,684=0,316.
Ответ: 0,032; 0,316.
В порядке убывания: 0,9; 0,19; 0,111