Начнём с того, что... 1)м<span>едиана, проведенная из вершины прямого угла всегда равна половине гипотенузы, как радиус описанной окружности.
2)</span><span>Но половина гипотенузы равна средней линии этого треугольника - линии, соединяющей середины катетов, то есть 15 см.
Ответом и будет эти 15 сантиметров)))</span>
косинус - это отношение прилежащего угла к гипотенузе.
cosС = КС:АС=ЕС:ВС=0,4 => треугольники АКС и ВЕС равны по признаку равенства прямоугольных треугольников (Два прямоугольных треугольника равны, если у них соответственно равны: гипотенуза и катет.)
Из этого следует, что ВС=АС
В равнобедренном треугольнике высота является медианой и биссектрисой => АЕ=ЕС=ВК=КС
из этого следует, что КЕ - средняя линия треугольника=>
КЕ= АВ:2= 7:2=3,5
(вроде так, рисунок делала в Paint, поэтому немного не совпадает)
12 - 4 = 8, значит ДА +АВ = 8
Р ( АВС) = 8 * 2 = 16
Точка О - место пересечения биссектрис треугольника АВС.
Отрезки биссектрисы, разделённые точкой пресечения биссектрис (точкой О), имеют отношение большего к меньшему как (b+c):а, где а - сторона к которой проведена биссектриса, b и с - боковые стороны угла биссектрисы.
Значит в нашем треугольнике ВО/ОД=(АВ+ВС)/АС=2АВ/АС,
АО/ОФ=(АВ+АС)/АВ.
Пусть ∠АОВ=∠ДОФ=α.
Запишем формулы нахождения площадей треугольников АОВ и OФД и сразу разделим их как показано далее по предложенному отношению:
S(ΔАОВ) = 0.5·АО·ВО·sinα
-------------------------------------- =6:1,
S(ΔOФД) = 0.5·ОД·ОФ·sinα
(ВО/ОД)·(АО/ОФ)=6,
2АВ·(АВ+АС)/(АВ·АС)=6,
2АВ+2АС=6АС,
АВ=2АС,
Итак, АС/АВ=1/2=1:2 - это ответ.