Линейным углом двугранного угла называется угол, образованный лучами с вершиной на ребре, и при этом лучи лежат на гранях двугранного угла и перпендикулярны ребру.
В ∆ АВС опустим высоту АЕ перпендикулярно BC, тогда
DA перпендикулярен ( ABC )
AE принадлежит ( АВС )
Значит, DA перпендикулярен AE
AE перпендикулярен ВС
Тогда по теореме о трёх перпендикулярах DE перпендикулярен ВС
Из этого следует, что угол AED – линейный угол двугранного угла ABCD.
Рассмотрим ∆ АВС:
Высота равностороннего треугольника вычисляется по формуле:
h = a√3 / 2
где а – сторона равностороннего треугольника, h – высота
AE = AB × √3 / 2 = 6 × √3 / 2 = 3√3
Рассмотрим ∆ AED (угол DAE = 90°):
tg AED = AD / AE = 4 / 3√3 = 4√3 / 9
ОТВЕТ: 4√3 / 9
Образовались 8 углов, 4 острых угла равных между собой и 4 тупых, также равных между собой. Сумма одного острого и одного тупого угла равна 180°. По условию сумма двух углов равна 296°. Значит в задаче известна сумма двух равных углов, каждый из которых равен 268/2=134°, Смежный угол к любому из них равен 180-134=46°.
Ответ: 46°; 134°.
R=√(10²-8²)=6 радиус описанной окружности основания
S=R²3√3/4=27√3
V=Sh/3=27√3*8/3=72√3
ΔAKE = ΔKDC по двум сторонам и углу между ними ⇒ KD = KE ⇒
⇒ ∠KDE = ∠KED ⇒ ∠ADK = ∠KEC ⇒ ΔAKD = ΔKEC по двум сторонам и углу между ними ⇒ AD - BC ⇒ ΔABD = ΔEFC по стороне и двум прилегающим углам ⇒ AB = FC ⇒ BK = KF, что и требовалось.
Формула длины окружности 2*Pi*R= 2* 3.14*17=106,76