Пусть ∠DAB = 2α, тогда ∠ABC = 180 - 2α, а ∠KAB = α (т.к. AK - биссектриса).
Тогда в ΔABK ∠BKA = 180 - (180 - 2α) - α = α и, следовательно, он равнобедренный ⇒ AB = BK = 48
Обозначим CK через x и запишем периметр параллелограмма:
2 * (AB + BC) = 228
2 * (48 + 48 + x) =228
2x = 36
x = 18
1)110-50=60(см)
2)360+60=420(см)
Ответ:420см
Плоскость АВД проходит через прямую ВД, а ВД перпендикулярна плоскости АСД.Значит, пл.АВД перпендикулярна пл. АСД (по признаку перп-ти плоскостей).
ВД перпендикулярна пл. АДС, так как ВД перп-на СД по условию и ВД перпен-на АД, так как АД -высота треуг-ка АВС.Получается, что прямая ВД перпендикулярна одновременно двум пересекающимся прямым в плоскости АДС. Значит ВД перпенд-на пл.АДС.Работает признак перпен-ти прямой и пл-ти.
По теореме срнусов АВ/sinC=BC/sinA следовательно, АВ=ВС*sinC/sinA
AB=2*1/0,4=5
1-sin90