то есть система решений в натуральных числах будет иметь вид
y=n
x=2n
бесконечное множество
1) (Cos(1 - x/2))' = -Sin(1 -x/2) * (1 - x/2)' = 1/2*Sin(1 - x/2)
2) (Sin(2 - 3x/4) )' = Cos(2 -3x/4) * (2 -3x/4)'= -3/4*Cos(2 -3x/4)
3) (Sin(x+3)/2) ) ' = Cos(x +3)/2 * ((х +3)/2)' =1/2 * Сos(x +3)/2
4) (Сos(1-x)/3)' = -Sin(1 -x)/3 * ((1-x)/3)' = 1/3* Sin(1-x)/3
5) (Cos(4 -5x)/3)' = -Sin(4-5x)/3 * ( ( 4-5x)/3)' = 5/3 * Sin(4 -5x)/3
6) (Sin(2x +3)/5)' = Cos(2x +3)/5 * ((2x +3)/5)' = 2/5 * Cos(2x+3)/5
7) (Sin²2x)' = 2Sin2x* * (Sin2x)' = 2Sin2x * Cos2x * (2x)' =
=2Sin4x
8) (Cos⁴3x)' = 4Cos³3x * (Cos3x)' = 4Cos³ 3x *(-Sin3x) * (3x)' =
= -12Cos³ 3x* Sin3x
9) (Ctg²4x)' = 2Ctg4x * (Ctg4x)' = 2Ctg4x * (-1/Sin²4x) * (4x)'=
= -8Ctg4x/Sin²4x
10) (tg⁴x/2))' = 4tg³x/2 * (tgx/2)' = 4tg³x/2 * 1/Cos²x/2 * (x/2)'=
=2tg³x/2/Сos²x/2