все точки ХоУ имеют z=0, точка Р -ответ
Пусть A - начало координат
Ось X - AB
Ось Y - AD
Ось Z - AA1
Уравнение плоскости ABC
z=0
Координаты точек
K(0;a/2;0)
L(a/3;a;0)
D1(0;a;a)
Направляющий вектор KL (a/3;a/2;0)
длина KL = a√(1/9+1/4)=a√13/6
Направляющий вектор D1K(0; -a/2; -a)
расстояние от D1 до KL - Высота сечения =
|| i j k ||
|| 0 -a/2 -a || /(√13/6) = a √(19/13)
||a/3 a/2 0 ||
Площадь сечения половина основания на высоту
S=a^2 *√19/12
Уравнение плоскости KLD1
mx+ny+pz+q=0
подставляем координаты точек
an/2+q=0
am/3+an+q=0
an+ap+q=0
Пусть n=2 тогда q = -a m= -3 p= -1
-3x+2y-z-a=0
косинус угла между <span>KLD1 и ABC
cos a = 1/1/</span>√(9+4+1)=1/√14
По условию
СО = 5 см
ОН = 3 см (відстань від основи медіани до одного з катетів)
Медиана к гипотенузе в прямоугольном треугольнике равна половине гипотенузы, т.е. гипотенуза
ВА = 2*5 = 10 см
Из прямоугольного треугольника ВОН по теореме Пифагора
ВН² + ОН² = ВО²
ВН² + 3² = 5²
ВН² + 9 = 25
ВН² = 16
ВН = 4 см
ВС = 4*2 = 8 см
треугольники ВОН и АВС подобны, один угол общий, второй прямой, коэффициент подобия 2
СА = 2*ОН = 6 см
Периметр
P = 10 + 8 + 6 = 24 см