1. Б
2. В
3. В
4. Г
===============================
Cos²x/sin²x-sin²x/cos²x=4cos2x
(cos^4x-sin^4x)/sin²xcos²x=4cos2x
(cos²x-sin²x)(cos²x+sin²x)/sin²xcos²x=4cos2x
4cos2x/sin²2x=4cos2x
4cos2x=4cos2x*sin²2x,sin²2x≠0
{4cos2x-4cos2x*sin²2x=0
{sin²2x≠0
4cos2x(1-sin²2x)=0
cos2x=0⇒2x=π/2+πk,k∈z⇒x=π/4+πk/2,k∈z
1-sin²2x=0
sin²2x=1
(1-cos4x)/2=1
1-cos4x=2
cos4x=-1⇒4x=π+2πk,k∈z⇒x=π/4+πk/2,k∈z
Ответ x=π/4+πk/2,k∈z
4x...................................
2(4x^2-1)=0
4x^2-1=0
4x^2=1
x^2=1/4
x=0,5
Допустим, что у нас есть все числа от 20 до 49 в ряд. как проверить будет делиться это число на 11 или нет. по признаку: нужно сложить числа на четных местах и затем на нечетных, вычесть из одного числа другое и если получиться число, которое делиться на 11 или ноль, то исходное число будет делиться на 11. Так и сделаем.
Так как мы записывали подряд двузначные числа, но на нечетных буду стоять десятки этих чисел, а на нечетных - единицы.
значит на нечетных общая сумма будет: 2·10+3·10+4·10=90
а на четных: 3·(0+1+2+3+4+5+6+7+8+9)=3·45=135
находим разность 135-90=45 это число на 11 не делиться. Находим ближайшее к нему (так как спрашивается минимальное!! отсутствующее число) это будет 44. Значит нам нужно уменьшить разность на единицу. Так как у нас двузначные числа, то нужно, что бы разность между единицами и десятками в отсутствующем числе была 1, а минимальным таким числом будет 23.
И так, если его не будет у нас
на нечетных общая сумма будет: 2·9+3·10+4·10=88
а на четных: 3·(0+1+2+4+5+6+7+8+9)+2·3=132
тогда разность: 132-88=44 а оно делиться на 11.
<span>Ответ: 23 НАЗДОРОВЬЕ)
</span>