Площадь треугольника=половине произведения
двух его сторон на синус угла между ними)
S = 8*9*sin(30°) / 2 = 8*9 / 4 = 2*9 = 18
sin(30°) = 1/2
R=a:w^2
R=72м/с^2:(6с^-1)^2=2м
Ответ: 2м
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его медианы. Тогда треугольники AKB и ALB равны по второму признаку равенства треугольников. У них сторона AB общая, стороны AL и BK равны как половины боковых сторон равнобедренного треугольника, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Так как треугольники равны, их стороны AK и LB равны. Но AK и LB - медианы равнобедренного треугольника, проведённые к его боковым сторонам.
При пересечении двух прямых получаем 2 пары вертикальных равных углов.
градусная мера 2-х вертикальных углов 124°
градусная мера 2-х других вертикальных углов равна 180°-124°=56°
ответ: 56°; 124°; 56°; 124°