Сначала на лучах угла откладываем равные отрезки и строим равнобедренный треугольник АВО. А потом через точку С проводим линию параллельную AB.
Отложить отрезки на лучах просто. А параллельная линия строится путем построения ромба, у которого стороны попарно параллельны. Для этого построим окружность с центром С, пересекающую АВ. Из точки М тем же радиусом делаем засечку на АВ, из этой точки N этим же радиусом делаем засечку на окружности Е, получим прямую СЕ пересекающую наши лучи ОА и ОВ под равными углами.
Sin A = BC/AB
AB = BC/sin A
sin A = √(1- cos^2 A) = √(1- (2√2/3)^2=√(1-8/9)=√(1/9)=1/3
AB = 2: 1/3 = 2*3 =6
См. рисунок. Плоскость синего цвета параллельна осевому сечению цилиндра, в ней и находится отрезок АВ. Найти расстояние от отрезка АВ до оси - это найти расстояние от хорда АК до диаметра ( см второй рисунок)
Хорда АК находится по теореме Пифагора АК²=АВ²-ВК²=13²-5²=
=(13-5)(13+5)=8·18=144=12²
АК=12 м
Чтобы найти расстояние надо найти высоту равнобедренного треугольника, боковые стороны которого равны радиусам - 10 м
Проведем высоту в этом треугольнике, получим прямоугольный треугольник и
по теореме Пифагора
h²=10²-6²=100-36=64=8²
Ответ 8 см
А) 3
Б) 2
В) 1
Вот, но это не точно