В числителе сумма членов геометрической прогрессии
Функция убывает, если выполняется такая закономерность: Большему значению аргумента соответствует меньшее значение функции.То есть при х₁>х₂ выполняется неравенство у(х₁)<у(х₂).
Пусть х₁>х₂>2, тогда 4/х₁<4/х₂ (из двух дробей с одинаковыми числителями меньше та, у которой знаменатель больше). Теперь от обеих частей неравенства отнимем 2, получим
4/х₁-2<4/х₂-2 . То есть у(х₁)<у(х₂), что и требовалось доказать.
Ответы задания 1, 2,3 представлены на фото