((2x)^2)^3 * ((2x)^3)^2 = (2x)^(2*3) * (2x)^(3*2) =(2x)^6 * (2x)^6 =
=(2x)^(6+6) = (2x)^12
^ - степень
1. Пускай х - скорость катера. По течению реки катер потратил время 21/(х+2). Против течения 10/(х-2). Всего потратил (21/(х+2))+(10/(х-2))=2,5 часов. (21×(х-2)+10×(х+2))/((х+2)×(х-2))=2,5. 21х-42+10х+20=2,5×(х^2-4), 31х-22=2,5х^2-10, 2,5х^2-31х+12=0, D=(-31)^2-4×2,5×12=961-120=841. x1=(31- корень с 841)/(2×2,5)=(31-29)/5=0,4. х2=(31+корень с 841)/(2×2,5)=(31+29)/5=12. Результат х1=0,4 не имеет решения задачи, так как скорость меньше скорости реки. Ответ: скорость катера 12 км/ч.
2. Пускай х^2-7=0. Тогда х^2=7, х1= - корень из 7, х2= + корень из 7.
Пускай 2х-5=0. Тогда 2х=5, х3=2,5.
Корень из 7 равен 2,64575 - это и будет наибольший корень уравнения.
Z*6=64
Z=64/6
Z=32/3
Z=10 2/3.
Знаметель дроби не равен 0:
ln[(x - 2)/(4 - x)] ≠ 0
ln[(x - 2)/(4 - x)] ≠ ln1
(x - 2)/(4 - x) ≠ 1
x - 2 ≠ 4 - x
x + x ≠ 4 + 2
2x ≠ 6
x ≠ 3
Подлогарифмическое выражение больше 0:
(x - 2)/(4 - x) > 0
(x - 2)/(x - 4) < 0
Нули числителя: x = 2
Нули знаменателя: x = 4
+ 2||||||||||||||||-||||||||||||||||||4 +
---------------------0----------------------------0-------------> x
2 < x < 4
Но x ≠ 3
Поэтому x ∈ (2; 3) U (3; 4).
Ответ: D(y) = (2; 3) U (3; 4).
Привела к такому виду, но как найти переменных извини не знаю.