105 : 14 = 98 (остаток 7)
Нехай сторони прямокутника дорівнюють х см і у см.
Знаючи, що діагональ дорівнює 13 см і використовуючи теорему Піфагора, складаємо перше рівняння:
х² + у² = 169
Знаючи, що площа прямокутника дорівнює 60 см², складаємо друге рівняння:
ху=60
Отримали систему рівнянь:
{<span>х² + у² = 169,
</span>{<span>ху=60
Виражаємо з другого рівняння х через у (х=60/у) і підставляємо це значення у перше рівняння:
(60/у)</span>² + у² = 169
3600/у² + у² = 169
Множимо обидві частини рівняння на у², щоб позбутися знаменника (у≠0):
3600 + у⁴ = 169у²
у⁴ - 169у² + 3600 = 0
Отримали біквадратне рівняння.
Вводимо заміну: у² = t
t² - 169t + 3600 = 0
D = 28561-14400 = 14161
t₁ = (169+119)/2 = 144
t₂ = (169-119)/2 = 25
y² = 144
y₁ = -12 - не задовольняє умову задачі
у₂ = 12 х₂ = 60/12 = 5
у² = 25
у₃ = -5 - <span>не задовольняє умову задачі
у</span>₄ = 5 х₄ = 60/5 = 12
Відповідь. 5 см і 12 см дорівнюють сторони прямокутника.
SΔABC=6+54=60м² ⇒SΔABC=1/2AB·BC;AB=AM+MB; MC²=AM·MB;
SΔAMC=1/2·AM·MC ⇒AM=2·6/MC=12/MC;
SΔCMB=1/2·MB·MC ⇒MB=2·54/MC=108/MC;
MC²=12/MC·108/MC=1296/MC² ⇒MC⁴=1296;MC=6м;
AM=12/6=2м;МВ=108/6=18м;
АВ=2+18=20м;
АС²=АМ²+МС² ⇒АС=√4+36=√40=2√10м;
ВС²=МВ²+МС² ⇒ВС=√18²+6²=√360=6√10м.
Всего в классе 40% девочек и 60% мальчиков
Из девочек в секции ходит (0,4*0,3)*100%=12% от всех учащихся
Из мальчиков в секции ходит (0,6*0,5)=30% от всех учащихся
Всего в секции ходит 12%+30%=42% всех учащихся