действуем по алгоритму нахождения наименьшего значения функции на отрезке:
<span><span>Область определения функции не ограничена: D(y) = R.</span><span>Производная функции равна: y’ = 3x2 – 36x + 81. Область определения производной функции также не ограничена: D(y’) = R.</span><span>Нули производной: y’ = 3x2 – 36x + 81 = 0, значит x2 – 12x + 27 = 0, откуда x = 3 и x = 9, в наш промежуток входит только x = 9 (одна точка, подозрительная на экстремум).</span><span>Находим значение функции в точке, подозрительной на экстремум и на краях промежутка. Для удобства вычислений представим функцию в виде: y = x3 – 18x2 + 81x + 23 = x(x-9)2+23:<span><span> y(8) = 8 · (8-9)2+23 = 31;</span><span>y(9) = 9 · (9-9)2+23 = 23;</span><span>y(13) = 13 · (13-9)2+23 = 231.</span></span></span></span>
Итак, из полученных значений наименьшим является 23. <span>Ответ: 23.</span>
24часа - сутки
1/6 от суток это 4 часа (24*1/6=4)
24-4=20
Чтобы в прямоугольнике получился и треугольник,и четырёхугольник надо расположить отрезок вот так:
167+123= 290 грн - було в першій касі.
807-290 = 517 - в другій касі.