<EAB=150 - внешний угол треугольника АВО =>
=> <EAB=<AOB+<ABO
<AOB=90, т.к. АВСD- ромб и AC и BD -диагонали ромба (взаимно перпендикулярны)
<ABO=<CDO=x, т.к. треуг. АВО=треуг.ВСО, т.е. у них равны соответственные углы
<BAO=<EAO-<EAB=180-150=30
<BAO=<BCO=y=30, т.к. треуг. АВО=треуг.ВСО, т.е.<span> у них равны соответственные углы</span>
2) BF-высота =>в<span> треугольнике AFB: <AFB=90, BF=4 см, <A=60 =>
</span>x=<AB)=90-30=60
Ответ: х=60, у=30
Сечение трапеции (вместе с шаром), проходящее через диагонали оснований и противоположные боковые ребра, это трапеция, у которой большое основание 2*b*корень(2), а три другие стороны b*корень(2). У этой трапеции центр описанной окружности лежит в середине большого основания (это легко показать, если провести через вершину малого основания трапеции прямую II противоположной боковой стороне - при этом получится равносторонний треугольник, из чего следует, что середина большого основания равноудалена от вершин трапеции. А это означает, что центр большего основания усеченной пирамиды РАВНОУДАЛЕН от вех вершин пирамиды. То есть это центр шара. Окружность, описанная вокруг этой трапеции, это осевое сечение шара, и мы сами не заметили, как нашли радиус шара:))) он равен боковому ребру, то есть b*корень(2)
Ответ:
В условии задачи не должно быть не "медиана", а "видна". Тогда задача решается через отношения сторон в прямоугольном треугольнике.
Объяснение:
На ютубе есть подробный разбор этой задачи. Набери : "4. Геометрия, 8 класс, СОР за II четверть" на канале
Учебный центр Lessons.
Сума углов у многоугольника (n-угольника) вычисляется по формуле: 180°×(n-2),