*На гладком столе лежит доска массой M = 500 г, на краю которой покоится маленькая шайба массой m = 110 г (см. рисунок). Коэффициент трения между шайбой и доской равен μ = 0,1. Какую максимальную по модулю скорость vmax можно сообщить шайбе, чтобы пройдя по доске путь до уступа и обратно, она осталась на доске?
Длина доски до уступа равна l = 1 м. Удар шайбы об уступ считайте абсолютно упругим. Ускорение свободного падения примите равным g = 10 м/с2. Ответ округлите до двух знаков после запятой.
MV²/2 + mv²/2 = MU²/2 + mu²/2 , где V и U – ЗНАКОВЫЕ ПРОЕКЦИИ скоростей большого тела до и после соударения, а v и u – знаковые проекции скоростей до и после соударения малого тела.
MV + mv = MU + mu ;
M ( V² – U² ) = m ( u² – v² ) ;
M(V–U) = m(u–v) ;
V + U = u + v ;
v–V = –(u–U) ;
|v–V| = |u–U| – итак, мы пришли к замечательному выводу: модуль скорости малого тела относительно большого ТОЧНО сохраняется.
К этому же выводу можно прийти и простыми рассуждениями, если перейти временно в инерциальную систему центра масс СЦМ. В СЦМ общий импульс равен нулю, т.е. модули скоростей двухчастной системы пропорциональны друг другу, а энергия сохраняется. Иначе говоря, энергия, пропорциональная сумме квадратов скоростей частей системы, а значит и просто – пропорциональная квадрату скорости любой из частей системы сохраняется! Стало быть, после упругого соударения должны сохраниться и модули скоростей частей системы в СЦМ. А раз скорости относительно СЦМ после соударения сохраняются по модулю и всё так же остаются противоположными, то значит их скорость относительно друг друга по модулю – ТОЧНО сохраняется.
Итак, после абсолютно упругого удара шайбы об уступ: скорости, как доски, так и шайбы – скачкообразно изменятся, ОДНАКО скорость шайбы ОТНОСИТЕЛЬНО ДОСКИ ТОЧНО сохранится по модулю и развернётся.
Будем считать, что движение шайбы всё время происходит в неинерциальной системе отсчёта, связанной с доской.
Для этого разберёмся, как параметры лабораторной системы (ЛСО) – связаны с нашей неинерциальной. В ЛСО движение шайбы происходит с ускорением a = –μg , при этом доска движется с противоположным ускорением [m/M]μg .
Таким образом, в неинерциальной СО, связанной с доской (далее СОД) ускорение шайбы: v' = –μg(1+m/M) ;
Когда скорость шайбы в СОД мгновенно разворачивается, сохраняясь по модулю – одновременно так же мгновенно разворачивается и ускорение в СОД.
Таким образом, в СОД – шайба всё время движется с одним и тем же ускорением v' = –μg(1+m/M), всегда направленным против скорости, которая изменяется без скачков по модулю (скачок отскока мы «сшили»).
В таком случае, поскольку всё происходит на длине S, не более чем 2L – справедлива кинематическая связь:
v²–0² = 2S|v'|< 2*2L|v'| , разность квадратов краевых скоростей равна удвоенному произведению ускорения и пути.
1. При нагревании воды образуются пузырьки с паром, которых давление выталкивает вверх, добираясь до поверхности воды пузырьки насыщенного пара лопаются = слышен шум.
2. Перед самым закипанием наступает так называемое насыщение, вода при этом находится в термодинамическом равновесии с паром, после этого вода перестает нагреваться (она только испаряется)