Есть три варианта событий - мальчиков нет вообще, есть один мальчик, есть два мальчика. Тогда общая вероятность будет равна: (1-0,51)⁶ (то есть, все шестеро - девочки) + ((6!/(5!*1!))*0,51*0,49⁵) (то есть, один мальчик и пять девочек, причем мальчик может быть любым из шести детей, поэтому вариантов таких перестановок (6!/(5!*1!))) + ((6!/(4!*2!))*0,51²*0,49⁴) (то есть, два мальчика и четыре девочки, причем два мальчика могут быть любыми из 6 детей, поэтому вариантов таких перестановок (6!/(4!*2!))) Таким образом, общая вероятность: (1-0,51)⁶+((6!/(5!*1!))*0,51*0,49⁵)+((6!/(4!*2!))*0,51²*0,49⁴)≈0,325
P.S. Прошу прощения за ранее неверный ответ и благодарю того, кто указал на ошибку. И уважаемый пользователь Flsh, я честно не списывала Ваш ответ).