Треугольник АВС, уголС=90, АС=20, СН=3√39, sinА=СН/АС=3√39/20, cosA=sinABC=1- sin²А=1-(351/400)=49/400, sinA=7/20
По теореме синусов ВС/sin A=2R Найдем угол А= 180-64-86=30 градусов.
Получим по теореме синусов ВС/sin A=2R sin30=1/2 ВС/0,5=2*13
вс=13
Диагонали параллелограмма делятся точкой пересечения пополам.
Рассмотрим треугольник образованный стороной параллелограммаи половинами диагоналей.
Т.е. для нахождения стороны параллелограмма есть следующая формула
a=√(c²+b²-2c*b*cosα)
В данном случае c=d/2=12/2=6
b=D/2=20/2=10
a=√(6²+10²-2*6*10*cos 60)
a=√(36+100-120*cos 60)
a=√(136-120*1/2)=√76=2√19
b=√(6²+10²-2*6*10*cos 120)=√(136+120/2)=√196=14
Стороны 2√19 и 14
весь отрезок 12... 12-3-4=5 ... сд=5