Найдем треугольник KAC. Т.к он образован при прямом угле C в 90* и угол K - внешний (он равен 180*-120*=60*) из этого => что треугольник KAC = 180*-(90*+60*)=30*. Мы знаем, что сторона лежащая на против угла в 30* равна половине гипотенузе => AB = 1/2 AK = 20:2=10 см (Возможно не правильно) Я долго думал)
№1. Диагонали прямоугольника ABCD пересекаются в точке O. Найти угол ABO, если угол между диагоналями равен 70°.
Длины диагоналей прямоугольника равны.
Диагонали прямоугольника делятся точкой пересечения пополам
поэтому углы между диагоналями и боковой стороной равны между собой и равны (180°-70°):2 = 55°. То есть угол АВО = 55°
№2. На стороне BC параллелограмма ABCDвзята точка Р так,
что AB=BP.
Докажите, что AP – биссектриса угла BAD.
Треугольник АВР равнобедренный, поэтому угол ВАР = углу ВРА. А угол ВРА = углу РАD ( внутренние накрест лежащие при параллельных ВС и AD и секущей АР). То есть угол ВАР = углу РАD, а значит АР - биссектриса угла BAD
Периметр параллелограмма равен (АВ =CD): 10+10+8+10+18 = 56
Найти периметр параллелограмма, если CD=10 см, CP=6 см.
Задача про трапецию:
S=(a+b)/2*h
a=3 см
b=5 см
h=2 см, считаем: S=(3+5)/2*2=8/2*2=4*2=8 см²
Задачка про утверждения
Верно под цифрой 1
Задачка про треугольник:
S=1/2a*h, где а - основание, h-высота, подставляем:
S=1/2*24*19
S=12*19=228
Задачка про радиус описанной окружности:
Раз треугольник прямоугольный воспользуемся формулой:
R=c/2, где R-радиус, c- гипотенуза
По теореме Пифагора находи гипотенузу АB
AB²=AC²+BC²
AB²=8²+15²
AB²=289
AB=17
R=17/2
R=8,5
Scon=130см (x)
Sack-? (1,5x)
Sack=130*1,5=195см