Запишем правило рычага
F1 l1 = m g l2
l2/l1 = m×g/F
l2/l1=50×9,81/100=4,905
Такую задачу хорошо бы решать графическим методом - отрисовать два графика бегунов, и посмотреть где они пересекутся. Но тут непонятно как рисовать, поэтому прибегнем к традиционым методам алгебры. Давай рассуждать логически, и попробуем понять сколько времени каждому из бегунов потребуется до достижения отметки 500 м.
Первому, который бежит со скоростью 5 м/с как бы ясно, что потребуется 100 с. Ведь 5 * 100 = 500, верно? Это просто, но что со вторым?
Для второго напишем уравнение движения. Получится так:
х = а / 2 * (t - i)^2, где за i обозначим интервал 10 с. Ускорение а нам тоже задано в условии. Итого, в цифрах получим:
х = 0,2 / 2 * (t-10)^2 = 0,1 * (t-10)^2. И нас интересует при каком t он достигнет х=500 м.
Таким образом, получаем квадратное уравнение:
0,1 * (t-10)^2 = 500.
решаем:
(t-10)^2 = 5000
t^2 - 20t + 100 - 5000 = 0
t^2 - 20*t - 4900 = 0
дискриминант и т.п. выпиши сама, это несущественный вопрос. Существенно, что у этого уравнения два корня, один отрицательный поэтому не подходит по смыслу, а второй примерно 80 с.
Следовательно, из решения квадратного уравнения получаем, что второй бегун достигнет финиша на 500 м через 80 с, а первый, как мы нашли ранее, через 100 с.
Может теперь сказать ответ: да, второй бегун догонит и обгонит первого.
Это значит,что для повышения температуры 1 кг стали на 1 градус,нужно 400 джоуль тепла
Дано:
k=50кН/м=50000H/м
F=200H
Найти:
Δx-?
Решение:
F=Δx*k ⇒ Δx=F/k=200/50000=0.004м
Ответ: 0.004м