2sinx*cos+sinx+cosx+1=0
(2sinx*cosx+1)+(sinx+cosx)=0
(2sinx*cosx+1)+(√(sinx+cosx))²=0
(2sinx*cosx+1)+√(sin²x+2sinx*cosx+cos²x)=0
(2sinx*cosx+1)+√(2sinx*cosx+1)=0
замена переменной:
√(2sinx*cosx+1)=t,
t²+t=0
t₁=0, t₂=-1
обратная замена:
1. t=0, 2sinx*cosx+1=0, sin2x=-1
2x=-π/2+2πn, n∈Z |:2
x₁=-π/4+πn. n∈Z
2. t=-1, √(2sinx*cosx+1)=-1. 2sinx*cosx+1=1, 2sinx*cosx=0
sinx=0 или cosx=0
x₂=πn, n∈Z
x₃=π/2+πn, n∈Z
А) (4b-3)×(4b+3)
b) (y-6)×(y-6)
c) 3(2-3y)+x(2-3y)=(2-3y)×(3+x)