Ответ.<span> Если у пары внутренних накрест лежащих углов один угол заменить вертикальным ему, то получится пара углов, которые называются соответственными углами данных прямых с секущей. Что и требовалось объяснить.</span>
<span>Из равенства внутренних накрест лежащих углов следует равенство соответственных углов, и наоборот. Допустим, у нас есть две параллельные прямые (так как по условию внутренние накрест лежащие углы равны) и секущая, которые образуют углы 1, 2, 3. Углы 1 и 2 равны как внутренние накрест лежащие. А углы 2 и 3 равны как вертикальные. Получаем: </span><span>∠∠</span><span>1 = </span><span>∠∠</span><span>2 и </span><span>∠∠</span><span>2 = </span><span>∠∠</span><span>3. По свойству транзитивности знака равенства следует, что </span><span>∠∠</span><span>1 = </span><span>∠∠</span>3. Аналогично доказывается и обратное утверждение.
<span>Отсюда получается признак параллельности прямых по соответственным углам. Именно: прямые параллельны, если соответственные углы равны. Что и требовалось доказать.</span>
Решение во вложении
Успехов в математике!)
стаеш в одну из вершин и отмериваеш транпортиром 60 а далее все стороны переносиш симетрично
<span>У задачи 2 способа решения.
1 способ (если АВ перпендикулярна плоскости)
В этом случае необходимо найти АМ:
АМ:МВ = 2:3, АВ = АМ + МВ</span><span>=> 2х + 3х = 12,5
5х = 12,5
х = 2,5
АМ = 2х = 2 * 2,5 = 5 (м)
2 способ (если АВ является наклонной к плоскости)</span>Необходимо найти расстояние от точки М до плоскости (длину отрезка МD).Потребуются дополнительные построения: точка С, лежащая в плоскости; ВС - перпендикуляр к плоскости; АС - проекция наклонной АВ.Треугольники АВС и АDМ подобны по первому признаку.=> AM/AB = MD/BC, АВ = АМ + ВМ<span>MD = (12,5 * 2) / 5 = 5 (м)</span>