Обозначим эти стороны за a и b, углы, противолежащие им, соответственно за A и B. Используя теорему синусов и исходя из условия задачи, составим систему:
a²/b² = 1/2
a/sinB = b/sinA
a/b = 1/√2
a/sin30° = b/sinA
b =a√2
2a = a√2/sinA
sinA = a√2/2a = √2/2.
arcsinA = 45°.
По теореме о сумме углов треугольнике больший угол (угол С) равен 180° - 30° - 45° = 105°.
Ответ: 105°.
Углы равнобедренного треугольника : 30, 75, 75
Угол C - прямой => треугольник ABC прямоугольный. Найдем сторону BC по теореме Пифагора. BC = AB^2 - AC^2(под корнем).
BC=4=AC => Треугольник ABC равнобедренный. У равнобедренного треугольника углы при основании равны, значит угол B равен углу A.
Угол A=(180-90)/2=45 градусов.
Ответ: 45 градусов.
На диаметр опирается прямой угол))
вписанные углы, опирающиеся на одну дугу, равны
Ответ: 17 градусов))