Площадь ровна 10 см .
а периметр равен 20 см
3^x = 10 - log2 (x)
Аналитически не получается у меня. Только методом подбора. Область допустимых значений определяется логарифмом x > 0. Левая часть всегда положительна, значит, log2 (x) > 0, и x > 1. Иначе в промежутке (0; 1) левая часть изменяется от 1 до 3, а правая больше 10.
Попробуем подставить x = 2, 3^2 = 10 - log2 (2) = 9. равенство выполняется. Т.о. x = 2 является корнем уравнения.
Но м.б. есть ещё решения?
Для ответа на этот вопрос построим графики функций
y = 3^x и y = 10 - log2 (x)
График y = 3^x пересекает ось Оу в точке у=3. Влево, в область отрицательных значений икс, график стремится к нулю. Вправо, в область положительных значений икс, график стремится к бесконечности.
Рассмотри график y = log2 (x). Он нигде не пересекается с графиком y=3^x. Он пересекает ось Ох а точке х=1. Влево он стремится к минус бесконечности, не пересекая ось игрек. Вправо график стремится к бесконечности. Перевернём график: y = -log2 (x). Тут ситуация меняется. Хотя он по-прежнему пересекает ось икс в точке х=1, этот график теперь пересекает график 3^x, т.к. влево он бесконечно стремится к плюс бесконечности к оси игрек, а вправо стремится в минус бесконечность. Смещение графика вверх по оси игрек на 10 ситуацию не меняет y=10-log2 (x).
Итак, имеется только одно пересечение этих графиков, и одно решение:
x = 2.
Вот примерно так. Начала я с левой лапки, если что. Пишите, если не видно.
31х=1922/62
31х=31
Х=31/31
Х=1
1.327см 2.328см я думаю то что так