Ну смотри, площадь трапеции это полусумма оснований умножить на высоту. Т.е )(9+3) / 2 )*5 = 30
3)F(x)=2*x^3/3+3*x^(-4+1)/(-4+1)+x^(1/2+1)/(1/2+1)+2x+C=
=<u><em>(2/3)x^3-1/x^3+1.5x^(3/2)+2x+C</em></u>
4)s=∫√xdx=x^(3/2)/1.5=
подстановка по х от 1 до 4
=4^(3/2)/1.5-1^(3/2)/1.5=(8-1)/1.5=7/1.5=14/3=<u><em>4 2/3</em></u>
5)S=∫(6-x-x^2)dx=-x^3/3-x^2/2+6x=
найду пределы интегрирования как корни уравнения 6-x=x^2
x^2+x-6=0; D=1+24=25; x1=(-1+5)/2=2; x2=(-1-5)/2=-3
= -2^3/3-2^2/2+6*2-(-(-3)^3/3-(-3)^2/2+6*(-3))= -8/3-2+12-(9-4.5-18)=
= -4 2/3+12+13.5=25.5-4 2/3=51/2-14/3=(153-28)/6=125/6=<u><em>20 5/6</em></u>
Площадь 1/2а²*sinα=81√3
a² *sinα=81*4*√3/2
sinα=√3/2
α=120
Стержень - это цилиндр высотой Н и радиусом R.
Квадратные гайки - это прямоугольный параллелепипед высотой Н и основанием - квадрат со стороной а=12 см. Чтобы был минимальный расход материала, нужно прямоугольный параллелепипед вписать в цилиндр. Значит диаметр стержня D будет равен диагонали квадрата d:
D=d=a√2=12√2.
Объем стержня Vс=πR²H=πD²H/4=π*288H/4=72πH.
Объем прям.параллелепипеда Vп=a²H=144H.
Объем проделанного отверстия радиусом r=6/2=3:
Vо=πr²H=9πH.
Найдем отходы V=Vc-Vп+Vo=72πН-144Н+9πН=9Н(9π-16)
Процент отходов от объема %=V*100/Vc=9Н(9π-16)*100/72πН=12,5(9π-16)/π=112,5-200/π≈112,5-63,69=48,81%
<span>Стороны АС, АВ, ВС треугольника АВС равны 3 корня из 2, корень из 14 и 1 соответственно. Точка К расположена вне треугольника АВС, причём отрезок КС пересекает сторону АВ в точке, отличной от В. Известно, что треугольник с вершинами К, А и С подобен исходному. Найдите косинус угла АКС, если угол КАС>90 градусов.</span>