1) Область определения логарифма
{ x > 0; x =/= 1
{ x^2 + 2x - 3 = (x + 3)(x - 1) > 0
Отсюда
{ x > 0; x =/= 1
{ x < -3 U x > 1
В итоге: x > 1
Это значит, что логарифм по основанию х - возрастающий.
Кроме того, если x^2 + 2x - 3 > 0. то x^2 + 2x - 2 тоже > 0
2) Теперь решаем само неравенство
По одному из свойств логарифмов
Причем новое основание с может быть каким угодно, например, 10.
Замена
Поскольку x > 1, то lg (x) > 0, поэтому при умножении на знаменатель знак неравенства не меняется.
Единственное решение уравнения: y = 2, тогда y + 2 = 4, y^2 + 1 = 5.
Решение неравенства: y >= 2
x ∈ (-oo; -1-2√2] U [-1+2√2; +oo)
Но по области определения x > 1
Ответ: x ∈ [-1+2√2; +oo)