Y = 4x⁴ - 2x² + 3
Решение
1. Находим интервалы возрастания и убывания
Первая производная.
f'(x) = 16x³ - 4x
Находим нули функции. Для этого приравниваем производную к нулю
16x³ - 4x = 0
Откуда:
x₁ = -1/2
x₂ = 0
x₃= 1/2
(-∞ ;-1/2) f'(x) < 0 функция убывает
(-1/2; 0) f'(x) > 0 функция возрастает
(0; 1/2) f'(x) < 0 функция убывает
<span>(1/2; +∞) f'(x) > 0 функция возрастает</span>
<span>В окрестности точки x = -1/2 производная функции меняет знак с (-) на (+). Следовательно, точка x = -1/2 - точка минимума. В окрестности точки x = 0 производная функции меняет знак с (+) на (-). Следовательно, точка x = 0 - точка максимума. В окрестности точки x = 1/2 производная функции меняет знак с (-) на (+). Следовательно, точка x = 1/2 - точка минимума.
</span>
Решение смотри на фотографии
X^2+6=5x
X^2+6-5x=0
D=b^2-4ac=25-4×1×6=1
X1=5+1/2=3
X2=5-1/2=2
-2x+y=0
<span><u>-4x+2y=6
</u><u> y=0+2x>>>>>>>.y=2x
подставим в наши выражение
-2х+2х=0
-4х+2*2х=-4х+4х=0</u></span>