Рассмотрим такую задачу: какое наибольшее число ферзей можно поставить на доску 8×8 так, чтобы никакие 2 ферзя не били друг друга?
Рассуждение 1. Разобьём доску на 15 диагоналей, «идущих в одном направлении» (включая диагонали, состоящие из одной клетки). На каждой из них стоит не больше одного ферзя, поэтому всего ферзей не больше 15. Рассуждение 2. Разобьём доску на 8 вертикалей. В каждой вертикали стоит не больше одного ферзя, поэтому всего ферзей не больше 8. Рассуждение 3. Разобьём доску на 8 вертикалей. В каждой вертикали стоит не больше одного ферзя, поэтому ответ в задаче — 8 ферзей. Рассуждение 4. Разобьём доску на 8 вертикалей. В каждой вертикали стоит не больше одного ферзя. Разобьём доску на 8 горизонталей. В каждой горизонтали стоит не больше одного ферзя. Поэтому на доску можно поставить 8 ферзей. Выберите все корректные рассуждения.
Корректны рассуждения 2, 3 и 4. Ответ - 8 ферзей, причем те, кто интересовался этим вопросом, знают, что всего есть 92 различных способа (не учитывая поворотов и отражений доски). Из них только в 1 случае ферзи стоят так, что никакие три не стоят на одной прямой.