НОК (Наименьшее Общее Кратное) - двух целых чисел m и n есть наименьшее натуральное число, которое делится на m и n без остатка.
Находится следующим образом: разлагаем данные числа на простые множители
выписываем все простые множители, входящие хотя бы в одно из данных
чисел, каждый из взятых множителей возводим в наибольшую из тех
степеней, с которыми он входит в заданные числа. Производим умножение.
1. Выписываются все простые делители каждого числа:
68 = 2*2*17
57 = 3*19
НОК (68; 57) = 2²*17*3*19 = 68*57 = 3876
То есть для двух данных чисел наименьшим общим кратным будет их произведение, так что пример не очень удачный.
2. Попробуем найти НОК (192; 1080)
192 = 2*2*2*2*2*2*3 = 2⁶ *3
1080 = 2*2*2*3*3*3*5 = 2³ * 3³ * 5
НОК (192; 1080) = 2⁶ * 3³ * 5 = 64*27*5 = 8640
24,8+2,6=25,4( скорость теплохода)
25,4+2,6=28 (скорость по течнию)
Ответ: 28 км/час
Ну вроде всё логично. было 150 посетителей. Заказали 46 человек сок. 150-46=104. Ответ 104 человека не заказывали ни один из соков.