В условии АС=2СМ. А где расположена точка М?
Из центра О проводим радиус до одной из вершин прямоугольника.
Радиус наклонён под углом α к диаметру полукруга.
тогда одна из сторон равна а = R·sin α, а другая b = 2R·cos α
Площадь S(α) = a·b = 2R²·sin α · cos α = R² sin 2α
Находим производную: S' = R²·2·cos 2α
ищем максимум S' = 0 или cos 2α = 0 ---> 2α = π/2 ---> α = 45°
a = 0.5R√2 = 3√2(см) b = 2a = 6√2
S = (3√2)·(6√2) = 36см²
Ответ: 36см²
Для нахождения радиуса описанной окружности равностороннего треугольника существует формула:
<span>R=a/sqrt(3) где a-сторона треугольника, sqrt(3)-корень квадратный из 3</span>
<span>Нам дан периметр равностороннего треугольника, который вычисляется по формуле P=3а,следовательно а=P/3</span>
<span>а=63/3=21 см</span>
<span>R=21/sqrt(3), избавляемся от иррациональности в знаменателе, и получается:</span>
<span>R=7*sqrt(3) (7 умножить на корень квадратный из 3)</span>
<span>Ответ: радиус описанной окружности равен 7*sqrt(3)
</span>
Ответ:
Объяснение:
Примем за х угол СОВ,тогда угол АОВ будет х+25°,
угол АОС= угол СОВ+угол АОВ = 100°
Подставляем значения :
х+х+25°=100°
2х=100°-25°
2х=75°
х=75°:2
х=37°30' - угол СОВ,
37°30'+25°=62°30'- угол АОВ.