<span>ABCD-трапеция
AB=BC=AD=8 см
УГОЛ A=120</span>°<span>
найти
<em>DC=?</em>
</span>По условию данная трапеция равнобедренная.
Опустив высоты АК и ВЕ, разделим ее на прямоугольник АКЕС и два прямоугольных треугольника АКD и ВЕС .
<span>В трапеции сумма углов, прилежащих к боковой стороне, равна 180°. </span><span>Следовательно, угол D=180°-120°=60°
</span><span>Поэтому угол DАК=180°-90°-60°
</span><span>Угол DАК=30°.
</span><span><em>В прямоугольном треугольнике катет, противолежащий углу 30°, равен половине гипотенузы</em>.
</span>DК=8:2=4 см
На том же основании ЕС=4
<em>DС</em>=4+8+4=<em>16 см</em>.
Диагонали ромба взаимно перпендикулярны и в точке пересечения делятся пополам.
Диагонали ромба разбивают его на 4 равных прямоугольных треугольника с катетами
0,5дм и 3,5 дм
Тогда гипотенуза ( сторона ромба) по теореме Пифагора:
а²=0,5²+3,5²=0,25+12,25=12,5
а=√(1250/100)=(25/10)·√2=2,5√2
Над диагональю ромба длиной 1 дм расположена диагональ параллелепипеда длиной пропорциональной числу 13, обозначим 13х
Тогда высота параллелепипеда по теореме Пифагора
H²=(13x)²-1
Над диагональю ромба длиной 7 дм расположена диагональ параллелепипеда длиной пропорциональной числу 37, обозначим 37х
Тогда высота параллелепипеда по теореме Пифагора
H²=(37x)²-7²
Приравниваем правые части
(13х)²-1=(37х)²-7²
(37х)²-(13х)²=7²-1
(37х-13х)(37х+13х)=48
24х·50х=48
50х²=2
х²=1/25
х=1/5
Значит
диагонали параллелепипеда имеют длину (13/5)дм и (37/5) дм, а высота параллелепипеда
Н²=(169/25)-1=144/25
Н=12/5
S(полн)=2S(осн)+S(бок)=2·(1/2)·1·7+4·2,5√2·12/5=7+24√2
Ответ. 7+24√2 кв. дм
Рассмотрим параллелограмм abcd
L делит bc пополам => так как cd=1/2bc
Тогда мы понимаем что lc=cd и треугольник lcd равнобедренный значит у него углы при основании равны углы cld=ldc
Угол cld=lad как накрест лежащие углы при bc||ad и секущей ld
=>углы cld=ldc=lda ток что угол lda=углу ldc чтд