Для получения фигуры А1В1С1D1, симметричной фигуре АВСD относительно точки D (центральная симметрия), надо
для точек фигуры найти точку, симметричную данной, то есть лежащую на одной прямой с точкой симметрии (ее центром) на равном от этой точки расстоянии.То есть, например, для точки А найти точку А1 такую, что точка D является серединой отрезка АА1. Если центр симметрии принадлежит данной фигуре, то эта точка отобрвжается в себя, то есть остается неизменной.
Для получения фигуры А1В1С1D1, симметричной данной АВСD относительно какой-либо прямой (осевая симметрия), надо точкам данной фигуры найти точки, симметричные им относительно данной прямой. Для этого из точки на фигуре опускают перпендикуляр и на его продолжении откладывают точку на равном расстоянии от прямой. Точки фигуры, лежащие на прямой (оси симметрии) остаются неизменными.
Координаты отрезка вычисляются по следующей формуле: Корень квадратный из суммы квадратов координат
<span>короче так! все решается по т. Пифагора! соединяем А и Д1, А и М. теперь нужно построить сечение куба, это делается так: продолжаешь прямые АМ и ДС до их пересечения, получаем точку Н, соединяешь ее с точкой Д1, находим пересечение Д1Н с ребром СС1, получаем точку К. Соединяем Д1, К, М, А. Это и есть нужное сечение. Далее находим периметр АМКД1. Все по т. Пифагора!!!! АД1=4корня из 2АМ=2 корня из 5.треугАВМ=треугМСН (по 2-м углам и стороне: угАМВ=угНМС как вертикальные, угВАМ=угМНС как накрест лежащие при АН секущей и АВ параллельной ДС, ВМ=МС по условию) , отсюда следует что АВ=СН=4, значит СК=2, т. к. это средняя линия треугДД1Н и равна половине ДД1, т. е. 2.и опять по т. Пифагора! треугД1С1К прямоуг, значит Д1К=2 корня из 5 треуг МКС прямоуг, значитМК=2 корня из 2.ВСЕ! Теперь остается сложить все стороны полученного сечения! Р=АД1+Д1К+КМ+МА=4 корня из 5 + 6 корней из 2</span>
ОВ^2 = АВ^2 - АО^2 = 25^2 - (48/2)^2 = 49
ОВ = 7 см
ВД = 2хОВ = 14 см
Площадь
<span>S = АС х ВД / 2 = 48 х 14 / 2 = 336 кв. см</span>