Пусть точка пересечения хорды АВ с диаметром КN (в задании не сходятся обозначения диаметра и рисунок) - это точка Р, проекция точки С на основание - точка С1. Отрезок ОС1 = 4/2 = 2 см.
Тогда в треугольнике АОР катет ОР равен половине гипотенузы АО, то есть угол ОАР равен 30°.
АР = 4*cos 30° = 4*(√3/2) = 2√3 см.
АС1 = √(РС1² + АР²) = √((2+2)²+(2√3)²) = √(16+12) = √28 = 2√7 см.
Высота ОМ конуса равна √(5²-4²) = √(25-16) = √9 = 3 см.
Отрезок СС1 равен половине ОМ и равен (3/2) см.
Сторона АВ = 2АР = 2*(2√3) = 4√3 см.
Стороны АС и ВС равны:
АС = ВС = √(АС1²+СС1²) = √(28+(9/4)) = √((112+9)/4) = √(121/4) = 11/2 = 5,5 см.
По теореме синусов:
a/sinα=b/sinβ, b=a*sinβ/sinα=3√2*√2*2/√3*2=6/√3
Вот.Это же 7класс? Короче вот 7класс 1сор по Геометрии.
1. По теореме синусов:
a : sin 60° = b : sin 45° = 2R
a = 2R · sin 60° = 2 · 10 · √3/2 = 10√3 дм
b = 2R · sin 45° = 2 · 10 · √2/2 = 10√2 дм
2. По теореме косинусов:
b² = a² + c² - 2ac·cos B
b² ≈ 49 + 9 - 2 · 7 · 3 · 0,0349 ≈ 58 - 1,4658 ≈ 56,5342
b ≈ 7,5
По теореме синусов:
с : sin C = b : sin B
sin C ≈ 3 ·sin 88° / 7,5 ≈ 3 · 0,9994 / 7,5 ≈ 0,3998
∠C ≈ 24°
∠A = 180° - (∠B + ∠C) ≈ 180° - 88° - 24° ≈ 68°
3. В параллелограмме сумма квадратов диагоналей равна сумме квадратов всех его сторон:
AC² + BD² = 2(AB² + AD²)
AC = 40 м, BD = 32 м,
1600 + 1024 = 2(400 + AD²)
2624 = 2(400 + AD²)
AD² = 1312 - 400 = 912
AD ≈ 30,2 м
Диагонали параллелограмма точкой пересечения делятся пополам. По теореме косинусов из треугольника АОВ:
cosα = (ОА² + OB² - AB²) / (2·OA·OB)
cosα = (400 + 256 - 400) / (2 · 20 · 16) = 256 / 640 = 0,4
Решение в скане..............следующая что-то не дается.