Треугольники подобные, а значит углы у треуг. ABC = треуг. DEF
А = 74, С = 47, сумма углов(по закону) равна 180. Следовательно угол В= углу E и = (180* - 74* - 47*) = 59*
1) Рассмотрим треугольник АВС угол С= 90 градусов, угол В= 60 градусов =>уг. А= 30 гр
2) ПРоведем биссектрису ВЕ -> получим треугольник АЕВ - равнобедренный с углами при основании = 30 гр. и равными сторонами АЕ = ЕВ = 4
3) Рассмотрим треугольник ВЕС - прямоугольный, угол В в нём равен 30 гр -> угол Е = 60гр.
Катет, лежащий против угла 30 гр. = половине гипотенузы => ЕС = 2
4) Искомый катет АС = АЕ + ЕС = 6
Пусть АВСД - данный ромб и угол А=угол С=60 градусов, тогда треугольники АВД и СВД равносторонние (угол В=угод Д=180 градусов-угол А=180-60=120 градусов)
(диагонали ромба его биссектрисы,
угол АВД=угол АДВ=120:2=60 градусов)
И меньшая диагональ равна стороне, т..е 4
(меньшая диагональ ромба лежит против острого угла ромба.)
Тут нечего доказывать. Биссектриса по определению геометрическое место точек равноудалённых от сторон угла. А проведённые перпендикуляры как раз и есть эти расстояния