По теореме Пифагора половина основания равна
6=√(10²-8²)=√36
Тогда все основание в два раза больше и равно 12.
Рассмотри прямоугольный треугольник, образованный диагональю грани, основанием равнобедренного треугольника и высотой призмы.
По теореме Пифагора
H²=d²-12²=13²-12²=169-144=25
H=5 cм
Если одна из диагоналей ромба равна его стороне, то острый угол ромба равен 60°.
Обозначим сторону ромба за а.
Площадь такого ромба равна двум равносторонним треугольникам:
So = 2(a²√3/4) = a²√3/2.
Полная поверхность равна:
Sп = 2Sо+4а*(2√3) = 2*(a²√3/2)+8а√3 = а²√3+8а√3.
Приравняем это выражение заданному значению площади:
а²√3+8а√3 =48√3.
Получаем квадратное уравнение а²√3+8а√3-48√3 = 0.
После сокращения имеем а²+8а-48 = 0.
Квадратное уравнение, решаем относительно a: Ищем дискриминант:
D=8^2-4*1*(-48)=64-4*(-48)=64-(-4*48)=64-(-192)=64+192=256;Дискриминант больше 0, уравнение имеет 2 корня:
a₁=(√256-8)/(2*1)=(16-8)/2=8/2=4;a₂=(-√256-8)/(2*1)=(-16-8)/2=-24/2=-12 это значение отбрасываем.,
Площадь <span>основания равна:
</span><span>So = a²√3/2 = 4</span><span>²</span><span>√3/2 = 8</span><span>√3.</span>
<span>короче так! все решается по т. Пифагора! соединяем А и Д1, А и М. теперь нужно построить сечение куба, это делается так: продолжаешь прямые АМ и ДС до их пересечения, получаем точку Н, соединяешь ее с точкой Д1, находим пересечение Д1Н с ребром СС1, получаем точку К. Соединяем Д1, К, М, А. Это и есть нужное сечение. Далее находим периметр АМКД1. Все по т. Пифагора!!!! АД1=4корня из 2АМ=2 корня из 5.треугАВМ=треугМСН (по 2-м углам и стороне: угАМВ=угНМС как вертикальные, угВАМ=угМНС как накрест лежащие при АН секущей и АВ параллельной ДС, ВМ=МС по условию) , отсюда следует что АВ=СН=4, значит СК=2, т. к. это средняя линия треугДД1Н и равна половине ДД1, т. е. 2.и опять по т. Пифагора! треугД1С1К прямоуг, значит Д1К=2 корня из 5 треуг МКС прямоуг, значитМК=2 корня из 2.ВСЕ! Теперь остается сложить все стороны полученного сечения! Р=АД1+Д1К+КМ+МА=4 корня из 5 + 6 корней из 2</span>
ACD= 90-60=30
AD=3/2=(1.5)
CD(в квадрате)=AC^-CD^=9-9/4=27/4 (за пифагором) (^ это квадрат)
АВСD - ромб.По условию АD=13 дм; ВD=10 дм.
Решение.
ОВ=ОD=10/2=5 дм.
ΔАОD. ОА²=АD²-ОD²=13²-5²=169-25=144,
ОА=√144=12 дм.
АС=2АО=2·12=24 дм.