Сумма углов треугольника равна 180°. ⇒ неизвестный угол: 180-(105+35)=40°.
Углы треугольника: 105°, 35°,40°.
Если угол 150°, то высота поделит его на 90 и 60. В треугольнике большей боковой стороны и высоты гипотенуза 20, а углы 60 90 и 30. Катет который лежит напротив угла в 30° равняется половине гипотенузы. В данном случае высота это катет, так что 20/2 = 10 см
Решение во вложении-----------
значек " Δ " почему-то заменился на знак " ? "
В треугольнике BMC cos угла BCM = 1/2 = CM/BC, отсюда CM = BC/2 = 14√3.
Проведём высоты KH1 и MH2. В треугольнике CMH2 cos угла H2CM = 1/2 = CH2/MC, отсюда CH2 = (14√3)/2 = 7√3 = BH1, так как треугольник BKH1 = треугольнику CMH2 по гипотенузе и острому углу. KM = BC - 2BH1 = 28√3 - 14√3 = 14√3.
В треугольнике CMH2 sin угла MCH2 = (√3)/2 = MH2/MC, отсюда MH2 = (MC√3)/2 = (14√3*√3)/2 = 21.
Площадь трапеции BKMC = ((KM + BC)/2)*MH2 = ((14√3 + 28√3)/2)*21 = 441√3.
Ответ: 441√3