<span>Рациональные числа. Иррациональные числа.
Примеры иррациональных чисел.
Формула сложного радикала.</span>
<span>Иррациональные числа в отличие от рациональных (см. “Рациональные числа”) <span>не могут быть представлены в виде обыкновенной несократимой дроби вида:</span> m / n, где m и n – целые числа. Это числа нового типа, которые могут быть вычислены с любой точностью, но не могут быть заменены рациональным числом. Они могут появиться как результат геометрических измерений, например: </span>
<span> - отношение длины диагонали квадрата к длине его стороны равно ,</span>
- отношение длины окружности к длине её диаметра равно иррациональному числу
Примеры других иррациональных чисел:
<span>Докажем, что является иррациональным числом. Предположим противное: - рациональное число, тогда согласно определению рационального числа можно записать: = m / n , отсюда: 2 = m2 / n2, или m2 = 2 n2, то есть m2 делится на 2, следовательно, m делится на 2, откуда m= 2 k, тогда m2 = 4 k2 или 4 k2 = 2 n2, то есть n2 = 2 k2, то есть n2 делится на 2, а значит, n делится на 2, следовательно, m и n имеют общий множитель 2, что противоречит определению рационального числа (см. выше). Таким образом, доказано, что является иррациональным числом. </span>
<span>
</span>
(x^2-4x+4)-2(x^2+2x+1)=9-x^2
x^2-4x+4-2x^2-4x-2-6+x^2=0
-8x-4=0
-8x=4
x= 4/-8
x=-0.5
Ответ: √64=±8
арифметический корень из 100=10
F'(x)=2x-4x
2x-4x=0
-2x=0
x=0
f'(x)=4x-7
4x-7=0
4x=7
x=7/4
x=1 3/4