Log 2 (3sin2x-3sinx-2cosx+5)=2 3sin2x-3sin-2cosx+5=4 6sinx*cosx-3sinx-2cosx+1=0 3sin(2cosx-1)-(2cosx-1)=0 (2cosx-1)(3sinx-1)=0 Теперь решение разделяется: 1) 2cosx-1=0. cosx=1/2. x=(+-)π/3 + 2πn, n∈Z.(плюс минус в скобках означает два решение, одно с плюсом, а другое с минусом) 2) 3sinx-1=0. sinx=1/3. x=(-1)ⁿ arcsin1/3 + πn, n∈Z. Теперь нужно начертить окружность, отметить решения и найти корни.(Окружность с решением здесь начертить не могу, поэтому сразу напишу корни). Корни: -arcsin1/3 - π. -5π/3. arcsin1/3 - 2π. -7π/3. Получается на таком промежутке есть эти корни. Примечание: это задание ЕГЭ второй части, вроде №13, поэтому не нужно удивляться, если в ответе иногда получаются такие корни как арксинус чего то плюс(минус) пи или два пи, такое иногда(редко), но попадается.