y(x)=1/√(x-1)
y'(x)=(1/√(x-1))'=(1'*√(x-1)-1*(√(x-1))')/(√(x-1))²=(0-(1/(2*√(x-1))/(x-1)=-1/(2*√(x-1)³).
х2=27:3(икс в квадрате равно двадцать семь разделить на три)
х2=9
х=/9(икс равно корень из 9)
х=3
6√(16/9) - 4 = 6*(4/3)-4=8-4 =4
√(7,2*20)=√144=12
√(216/6) = √36 = 6
√((5²)²-3²) = 5²*3=75
4√(4*5) - √(25*5) = 4*2√5 - 5√5 = 3√5
3*√6*√3 +√(4*3)*√3 = 9√2 + 6
(5-√2)²= 25-10√2+4 = 29-10√2
√(144*3) = √432
-9√2 = -√162
√(x-3)² = x-3, при x=2,6 2,6-3 = -0.4
(√6*√6 - √6)/(√3*√6 -√3) = (√6(√6-1))/(√3(√6-1)) = √6/√3 = √(6/3) = √2
((4-√x)*(4+√x))/(4+√x) = 4-√x
(4(2√3-1)-4(2√3+1))/(12+1) = (8√3-4-8√3-4)/13 = -8/13